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The ability of transition-metal complexes to activate small
molecules such as CO, N2, and O2 is of significant importance in
chemistry and biochemistry.1a Of these, O2 activation has possibly
the most significant biological implications, from reversible binding/
transport of oxygen to oxidation catalysis.1b Catalytic methods for
oxidation are of critical importance since such methods obviate the
need to use stoichoimetric oxidants such as chromium and
manganese oxides. Thus, the study of metal complexes of dioxygen
has been of significant interest since the pioneering work of
Vaska,2a,b Ibers,2c Basolo,2d and others.2e In the realm of oxidation
catalysts, Pd(II) peroxo complexes2f-i may play a key role in
catalysis.

One of the challenges of developing well-defined molecular
catalysts for oxidation reactions is the need to employ oxidatively
stable ligands. Thus, N- and C-based ligands such as bipyridine,
sparteine, andN-heterocyclic carbenes (NHC) have been success-
fully employed with Pd-catalyzed oxidations.3 We report herein
our studies of the interactions of Rh-NHC complexes with
dioxygen, which remarkably occurwithout oxidationof the metal.

As part of our interest in the reactions of NHC-modified Rh
complexes with small molecules such as H2 and CO,3 we found
that the reaction of ClRh(IMes)(PPh3)2 (1)3c with oxygen or air
results in a change of color of the solution from yellow to green.
From this solution, dioxygen complex (2) was isolated, Figure 1.

Despite considerable literature on the chemistry of Rh and Ir
dioxygen complexes,2e,4compound2 is a rare example of a formally
square planar complex of molecular oxygen.4e-h In addition, the
O-O bond length in2 is unusually short (1.26 Å) compared with
typical peroxo species (1.4-1.5 Å).4,5 The closely related complexes
[ClRh(NHC)(PN)] 3a,b, where PN) chelatedo-(diphenylphos-
phino)-N,N-dimethylaniline and NHC is either IPr (3a, IPr )N,N-
bis(2,6-diisopropylphenyl)imidazol)-2-ylidene]) or IMes3c (3b),
feature O-O bond lengths of 1.450 Å.6

Further oxidation of the remaining phosphine ligand upon
exposure to air or oxygen made complex2 difficult to handle.
Additionally, the crystal was composed of three independent
complexes with slight variants in O-O bond lengths (Table 1).
Thus, we set out to prepare non-phosphine-containing analogs of
2. Treatment of [Rh(H2CdCH2)2Cl]2 with 2 equiv of IPr or IMe
under N2 gave yellow solutions which were then exposed to air or
oxygen. After several hours, the reactions began to darken, giving
deep blue solutions from which X-ray quality crystals were
obtained.

Complexes4 (IPr) and 5 (IMes) were also square planar,
exhibiting unusually short O-O bond lengths as low as 1.267(13)

Å (see Table 1), and are diamagnetic. The ORTEP drawing of4 is
given in Figure 2, and details of the structure determination of5
are found in the Supporting Information. Although complex5 is
comprised of two different forms in the crystal structure, resulting
from disorder of the Cl and O2 ligands,4 contains no such disorder
and still sports an unusually short O-O bond.

Considering the difficulties that can be associated with the
accurate determination of O-O bond lengths,7 we analyzed the IR
and Raman spectra of complex4. Given the unusually short O-O
bond distances, one would expect largerυO-O than observed in
typical peroxo complexes (750-900 cm-1). Although the IR
spectrum of4 is complex, Raman excitation at 568 nm (into a low-
energy absorption of the complex) provides resonance enhancement
of a band at 1010 cm-1. Based on the loss of this band and the
emergence of another at∼960 cm-1 in the18O2 isotopomer, this is
assigned as the O-O stretch. These data are consistent with a
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Figure 1. Preparation of compound2 from 1. Thermal ellipsoids are drawn
at 50%, and hydrogen atoms are omitted for clarity.

Table 1. O-O Bond Lengths in Selected M-O2 Complexes

entry complex O−O (Å)

1 ClRh(IMes)(PPh3)(O2), 2 1.26a

2 ClRh(IPr)2(O2), 4 1.315(3)
3 ClRh(IMes)2(O2), 5 1.267(13), 1.271(14)
4 ClRh(NHC)(PN)(O2), 3a, 3bb 1.450(2), 1.450(3)

a Average of three components of the crystal at 1.249(9), 1.298(9), and
1.231(16) Å. Note O2 itself is 1.21 Å.b 3a, NHC ) IPr; 3b, NHC ) IMes.

Figure 2. Synthesis and X-ray crystallographic structure (ORTEP drawing)
of ClRh(IPr)2(O2). Thermal ellipsoids are drawn at 50%, and hydrogen atoms
are omitted for clarity.
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stronger O-O bond such as would generally be observed in
O2

-(superoxide) species, suggesting a possible Rh(II)-(O2
-) elec-

tronic structure for these complexes. Considering the rarity of side-
on superoxo complexes in general, and the absence of such
complexes for Rh in particular, we examined the electronic structure
of the complexes by Rh L-edge X-ray Absorption Spectroscopy
(XAS) to evaluate the 4d orbital occupancy in4 from the intensity
of the dipole-allowed Rh 4dr2p transitions (Figure 3).

Figure 3 shows the Rh L3-edges for4, which clearly indicate a
valence d orbital occupation consistent with a Rh 4d8 species. Thus,
a single empty valence orbital [Rh 4dσ*(x2-y2)] and thus a single
main feature in the spectrum is expected.8 The observation of a
shoulder ∼2 eV below the main feature at 3009 eV can be
understood after consideration of DFT calculations performed on
theN-Me derivative of4. The resultant valence MO diagram (Figure
3, top) is consistent with a square planar Rh 4d8 metal center
coordinated bysinglet dioxygen, which is consistent with all
available data. It also provides a rationale for the low-energy
shoulder in the XAS data:π-backbonding from Rh into an empty
π* orbital of the dioxygen ligand (RhO2 π*) stabilizes the singlet
ground state and provides for intensity into the RhO2 π*rRh 2p(3/2)

transition (Figure 3, bottom inset).9 Furthermore, this electronic
description explains the superoxide-like O-O stretching frequency
given that the two major Rh-O2 bonding interactions both serve
to decrease the bond stretching frequency but essentially cancel
each other with respect to charge delocalization.

Thus it appears that the best description of the bonding is (Rh
4d8) - (1O2), i.e., square planar Rh(I) bound to singlet oxygen.10

This motif represents a fundamentally different mode of binding
for dioxygen, which has already yielded a surprisingly broad range
of binding modes with transition metals.1,2

Based on this work and existing literature, it is likely that
previous examples of Rh “peroxo” species with unusually short
O-O bond lengths also correspond to this novel bonding motif,
which together form a previously unrecognized class of transition-
metal-singlet dioxygen adducts. Interestingly, it appears that strong
field ligands may favor formation of singlet O2 adducts. For
example, ClRh(PR3)2 form four-coordinate dioxygen adducts with
O-O stretches of 993 and 990 cm-1 when R ) iPr or Cy,

respectively.4e,f However, the corresponding PPh3-O2 complex is
five-coordinate with an O-O distance of 1.413(9) Å.4a Milstein’s
square planar O2 complex bearing an electron-rich PCP-pincer
ligand4g also features a short O-O bond. Although no vibrational
or XAS data were reported, the observation of a large1JRh-P led
the authors to speculate that this complex may be best described
as an adduct between Rh(I) and dioxygen.4g Since a new type of
reactivity may be associated with this mode of bonding, obtaining
a clear picture of the Rh-O2 interaction is critical.

In conclusion, we have synthesized NHC-Rh complexes which
bind dioxygen giving square planar complexes with no net change
in the oxidation state of the metal. The effect that this unique
bonding arrangement has on reactivity is under assessment.
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Figure 3. Top: Schematic energy level diagram of DFT-calculated valence
MOs for 4. Orbitals are colored based on dominant atomic contributors.
Bottom: Rh L3-edge XAS data:4 (black), RhCl3 (blue, dashed), and
Rh(IPr)(OAc)(CO)2 (red, dashed). Inset: first derivative of data for4
and7.
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